GETARAN DAN GELOMBANG
A. GETARAN
Getaran adalah gerak bolak-balik benda melalui titik kesetimbangannya.
Perhatikanlah gambar di atas:
· Bila gerakan dimulai dari A maka satu getaran menempuh lintasan
A-B-C-B-A
· Bila gerakan dimulai dari B maka satu getaran dapat diawali dengan gerakan
ke kanan atau ke kiri (bebas)
· ke Kiri lintasannya B-A-B-C-B dan ke kanan lintasannya B-C-B-A-B
· Kalau C maka satu getarannya dengan mudah dapat ditentukan bukan ?
1. Amplitudo
Amplitudo didefinisikan sebagai simpangan getaran paling besar. dalam gambar di atas titik seimbangnya adalah B berarti amplitudo (simpangan maksimum)nya adalah BA dan BC. Dalam gelombang bunyi amplitudo mempengaruhi kuat lemahnya bunyi.
2. Periode dan Frekuensi
Periode ( T ) adalah waktu yang diperlukan untuk melakukan satu kali getaran.Frekuensi ( f ) adalah banyaknya getaran tiap satuan waktu (sekon). Frekuensi mempengaruhi tinggi rendah bunyi.
keterangan : n = banyaknya getaran/elombang
t = waktu (s)
bila kalian perhatikan antara rumus periode ( T ) dan frekuensi ( f ) saling berkebalikan .jadi hubungan antara periode dan frekuensi dapat ditulis :
B. GELOMBANG
Gelombang adalah geteran yang berjalan.
Berdasarkan kebutuhan medium (tempat) perambatannya dibedakan menjadi 2 yakni
- Gelombang mekanik, adalah gelombang yang memerlukan medium untuk perambatannya. mediumnya dapat berupa udara, zat cair maupun zat padat. dan tidak dapat melalui ruang hampa.
- Gelombang Elektromagnetik, adalah gelombang yang tidak memerlukan medium untuk perambatannya, berarti gelombang elektromagnetik dapat melalui ruang hampa. Contohnya gelombang cahaya.
Gelombang Mekanik
gelombang mekanik dibagi menjadi dua macam yakni gelombang tranversal dan gelombang longitudinal.
1. Gelombang Tranversal
adalah gelombang mekanik yang arah perambatannya tegak lurus terhadap arah getarannya.
Perhatikan gambar di atas :
gelombang merambat dari kiri kekanan sedangkan arah getarannya naik turun.
contoh gelombang tranversal : gelombang tali, gelombang air dll.
Hal2 yang perlu diperhatikan dalam gelombang tranversal ini :
- ABC, EFG, dan IJK = bukit gelombang
- CDE dan GHI = lembah gelombang
- B, F, dan J = titik puncak gelombang
- D dan H = titik dasar gelombang
- ABCDE, EFGHI = satu gelombang
Satu gelombang terdiri atas satu puncak gelombang dan satu lembah gelombang. Jadi, gelombang transversal pada Gambar di atas terdiri atas 3 puncak gelombang dan 2 lembah gelombang. Dengan kata lain terdiri atas 2,5 gelombang.
2. Gelombang Longitudinal
adalah gelombang mekanik yang arah perambatannya sejajar terhadap arah getarannya.
Contohnya: gelombang bunyi.
Cepat Rambat dan Panjang Gelombang
v = cepat rambat gelombang bunyi (m/s)
s = jarak yang ditempuh (m)
t = waktu tempuh (s).
berarti rumus kecepatan ada tiga macam dan penggunaanya tergantung dengan apa yang diketahui dalam soal. misal diketahui jarak tempuh (s) dan waktunya (t) maka menggunakan rumus v = s/t .
Contoh soal :
Diketahui sebuah gelombang seperti pada gambar jika jarak tempuh = 10 m
a. berapa Amplitudonya?
b. berapa frekuensi dan periodenya ?
c. berapa panjang gelombangnya ?
d. berapa kecepatannya ?
a. Ampitudo (A) nya = 5 cm
b. frekuensi (f) = banyak gelombang/waktu = 2,5/1 = 2,5 Hz
Periode (T) = waktu/banyak gelombang = 1/2,5 = 0,4 sekon
c. panjang gelombang = jarak tempuh/banyak gelombang = 10/2,5 = 4 m
d. karena yang dikethui dalam soal cukup banyak untuk mencari kecepatan dapat menggunakan 2 cara :
cara I : kecepatan (v) = jaraktempuh (s) / waktu tempuh (t) = 10 / 1 = 10 m/s
cara II : kecepatan(v) = panjang gelombang x frekuensi (f) = 4 x 2,5 = 10 m/s
C. GELOMBANG BUNYI
Seperti yang telah dikemukakan sebelumnya, bunyi merupakan bentuk dari gelombang tranversal (arah rambatan sejajar dengan arah getarannya). kuat lemah bunyi dipengaruhi Amplitudo dan tinggi rendah bunyi dipengaruhi oleh frekuensi
Nada adalah bunyi yang teratur
Desah adalah bunyi yang tidak teratur
Timbre adalah warna bunyi
Resonansi adalah peristiwa ikut bergetarnya benda lain yang berfrekuensi sama dengan sebuah benda yang bergetar. contoh pantulan bunyi dalam kotak udara gitar mempunyai frekuensi yang sama....maka terjadi resonansi dan bunyi gitar menjadi lebih nyaring dari bunyi aslinya (petikan senar saja).
contoh lain resonansi :
ketika sebuah bandul digoyang maka bandul lain yang tidak digoyang namun memiliki panjang yang sama akan secara alami ikut bergoyang...hal ini karena bandul yang mempunyai panjang tali yang sama juga mempunyai frekuensi yang sama juga....sehingga terjadi resonansi
1. Hukum Marsenne
Marsenne menyelidiki hubungan frekuensi yang dihasilkan oleh senar yang bergetar dengan panjang senar, penampang senar, tegangan, dan jenis senar. Faktor-faktor yang memengaruhi frekuensi nada alamiah sebuah senar atau dawai adalah: :
1) Panjang senar, semakin panjang senar semakin rendah frekuensi yang dihasilkan.
2) Luas penampang, semakin besar luas penampang senar, semakin rendah frekuensiyangdihasilkan.
3) Tegangan senar, semakin besar tegangan senar semakin tinggi frekuensi yang dihasilkan.
4) Massa jenis senar, semakin kecil massa jenis senar semakin tinggi frekuensi yang dihasilkan.
1) Panjang senar, semakin panjang senar semakin rendah frekuensi yang dihasilkan.
2) Luas penampang, semakin besar luas penampang senar, semakin rendah frekuensiyangdihasilkan.
3) Tegangan senar, semakin besar tegangan senar semakin tinggi frekuensi yang dihasilkan.
4) Massa jenis senar, semakin kecil massa jenis senar semakin tinggi frekuensi yang dihasilkan.
2. Pengelompokan bunyi berdasarkan frekuensinya :
1. Bunyi Infrasonik adalah bunyi yang frekuensinya < 20 Hz. bunyi initidak dapat didengarkan oleh manusia namun dapat didengarkan oleh laba-laba, jangkrik dan lumba-lumba.
2. Bunyi audiosonik adalah bunyi yang frekuensinya diantara 20 Hz - 20.000 Hz. bunyi jenis inilah yang dapat didengarkan oleh manusia.
3. Bunyi ultrasonik adalah bunyi yang frekuensinya > 20.000 Hz. bunyi jenis ini juga tidak dapat di dengarkan manusia. hewan yang mampu mengarkan bunyi jenis ini adalan lumba2, jangkrik, anjing....dll
3. Pemantulan Bunyi
Jenis pemantulan bumi ada 2 yakni :
1. Gaung, adalah bunyi pantul yang sebagian terdengar bersamaan dengan bunti aslinya. Hal ini menyebabkan bunyi asli terdengar kurang jelas.
Contoh
Bunyi asli : mer - de - ka
Bunyi pantul : mer - de - ka
mperistiwa seperti ini dapat terjadi dalam sebuah gedung yang tidak ada peredam suaranya. untuk mengurangi atau menghilangkan gaung diperlukan bahan peredam suara seperti : gabus, kapas, wool, kardus dll.
2. Gema, adalah bunyi pantul yang terdengar setelah bunyi asli selesai. hal ini terjadi karena dinding pantulnya mempunyai jarak yang jauh. misalnya pada suatu lembah atau gunung.
Contoh
Bunyi asli : mer - de - ka
Bunyi pantul : mer - de - ka
4. Perhitungan Jarak Sumber Bunyi dengan Bidang Pantul
karena lintasan bunyi pantul merupakan gerak bolak balik maka jarak sumber dengan bidang pantul sama dengan separuhnya
Contoh :
Diketahui cepat rambat gelombang bunyi di udara adalah 340 m/s. Sebuah kapal memancarkan bunyi sonar ke dasar laut. Jika 4 sekon kemudian orang di dalam kapal dapat mendengarkan bunyi pantulannya. Hitung kedalaman laut tersebut...?
t = 4 s
v = 340 m/s
s = (v x t) / 2 = (340 x 4) / 2 = 680 m
D. ALAT OPTIK
Cermin dan lensa serta prinsip kerjanya memberikan sarana pemahaman bagi pemanfaatannya untuk mempermudah dan membantu kehidupan manusia. Alat-alat yang bekerja berdasarkan prinsip optik (cermin dan lensa) digolongkan sebagai alat optik.
1. Mata
Salah satu alat optik alamiah yang merupakan salah satu anugerah dari Sang Pencipta adalah mata. Di dalam mata terdapat lensa kristalin yang terbuat dari bahan bening, berserat, dan kenyal. Lensa kristalin atau lensa mata berfungsi mengatur pembiasan yang disebabkan oleh cairan di depan lensa. Cairan ini dinamakanaqueous humor. Intensitas cahaya yang masuk ke mata diatur oleh pupil.
· Bagian-bagian mata
Cahaya yang masuk ke mata difokuskan oleh lensa mata ke bagian belakang mata yang disebut retina. Bentuk bayangan benda yang jatuh di retina seolah-olah direkam dan disampaikan ke otak melalui saraf optik. Bayangan inilah yang sampai ke otak dan memberikan kesan melihat benda kepada mata. Jadi, mata dapat melihat objek dengan jelas apabila bayangan benda (bayangan nyata) terbentuk tepat di retina.
Lensa mata merupakan lensa yang kenyal dan fleksibel yang dapat menyesuaikan dengan objek yang dilihat. Karena bayangan benda harus selalu difokuskan tepat di retina, lensa mata selalu berubah-ubah untuk menyesuaikan objek yang dilihat. Kemampuan mata untuk menyesuaikan diri terhadap objek yang dilihat dinamakan daya akomodasi mata.
· Daya akomodasi mata
Saat mata melihat objek yang dekat, lensa mata akan berakomodasi menjadi lebih cembung agar bayangan yang terbentuk jatuh tepat di retina. Sebaliknya, saat melihat objek yang jauh, lensa mata akan menjadi lebih pipih untuk memfokuskan bayangan tepat di retina.
Titik terdekat yang mampu dilihat oleh mata dengan jelas disebut titik dekat mata (punctum proximum/PP). Pada saat melihat benda yang berada di titik dekatnya, mata dikatakan berakomodasi maksimum. Titik dekat mata disebut juga dengan jarak baca normal karena jarak yang lebih dekat dari jarak ini tidak nyaman digunakan untuk membaca dan mata akan terasa lelah. Jarak baca normal atau titik dekat mata adalah sekitar 25 cm.
Adapun, titik terjauh yang dapat dilihat oleh mata dengan jelas disebut titik jauh mata (punctum remotum/PR). Pada saat melihat benda yang berada di titik jauhnya, mata berada dalam kondisi tidak berakomodasi. Jarak titik jauh mata normal adalah di titik tak hingga (~).
· Rabun Jauh dan Cara Memperbaikinya
Orang yang menderita rabun jauh atau miopi tidak mampu melihat dengan jelas objek yang jauh tapi tetap mampu melihat dengan jelas objek di titik dekatnya (pada jarak 25 cm). titik jauh mata orang yang menderita rabun jauh berada pada jarak tertentu (mata normal memiliki titik jauh tak berhingga).
Rabun jauh dapat diperbaiki dengan menggunakan lensa divergen yang bersifat menyebarkan (memencarkan) sinar. Lensa divergen atau lensa cekung atau lensa negatif dapat membantu lensa mata agar dapat memfokuskan bayangan tepat di retina.
miopi dikoreksi menggunakan lensa negatif
Jarak fokus lensa dan kuat lensa yang digunakan untuk memperbaiki mata yang mengalami rabun jauh dapat ditentukan berdasarkan persamaan lensa tipis dan rumus kuat lensa.
Di sini jarak s adalah jarak tak hingga (titik jauh mata normal), dan s’ adalah titik jauh mata (PR). Prinsip dasarnya adalah lensa negatif digunakan untuk memindahkan (memajukan) objek pada jarak tak hingga agar menjadi bayangan di titik jauh mata tersebut sehingga mata dapat melihat objek dengan jelas.
· Rabun Dekat dan Cara Memperbaikinya
Orang yang menderita rabun dekat atau hipermetropi tidak mampu melihat dengan jelas objek yang terletak di titik dekatnya tapi tetap mampu melihat dengan jelas objek yang jauh (tak hingga). Titik dekat mata orang yang menderita rabun dekat lebih jauh dari jarak baca normal (PP > 25 cm).
Cacat mata hipermetropi dapat diperbaiki dengan menggunakan lensa konvergen yang bersifat mengumpulkan sinar. Lensa konvergen atau lensa cembung atau lensa positif dapat membantu lensa mata agar dapat memfokuskan bayangan tepat di retina.
hipermetropi dikoreksi menggunakan lensa positif
Jarak fokus lensa dan kuat lensa yang digunakan untuk memperbaiki mata yang mengalami hipermetropi dapat ditentukan berdasarkan persamaan lensa tipis dan rumus kuat lensa.
Di sini jarak s adalah jarak titik dekat mata normal (25 cm), dan s’ adalah titik dekat mata (PP). Prinsip dasarnya adalah lensa positif digunakan untuk memindahkan (memundurkan) objek pada jarak baca normal menjadi bayangan di titik dekat mata tersebut sehingga mata dapat melihat objek dengan jelas.
2. Kaca Pembesar
Kaca pembesar atau lup digunakan untuk melihat benda kecil yang tidak bisa dilihat dengan mata secara langsung. Lup menggunakan sebuah lensa cembung atau lensa positif untuk memperbesar objek menjadi bayangan sehingga dapat dilihat dengan jelas.
Bayangan yang dibentuk oleh lup bersifat maya, tegak, dan diperbesar. Untuk mendapatkan bayangan semacam ini objek harus berada di depan lensa dan terletak diantara titik pusat O dan titik fokus F lensa. untuk menghasilkan bayangan yang diinginkan, lup dapat digunakan dalam dua macam cara, yaitu dengan mata berakomodasi maksimum dan dengan mata tidak berakomodasi.
Lup dapat digunakan dengan mata berakomodasi maksimum untuk mendapatkan perbesaran bayangan yang diinginkan. Agar mata berakomodasi maksimum, bayangan yang terbentuk harus tepat berada di titik dekat mata (s’ = sn = jarak titik dekat mata).
Perbesaran bayangan yang dihasilkan oleh lup dengan mata berakomodasi maksimum adalah
Dimana P adalah perbesaran lup, sn adalah jarak titik dekat mata (sn= 25 cm untuk mata normal), dan f adalah jarak fokus lup.
Menggunakan lup dalam keadaan mata berakomodasi maksimum membuat mata menjadi cepat lelah. Agar mata relaks dan tidak cepat lelah, lup digunakan dalam keadaan mata tidak berakomodasi. Untuk mendapatkan perbesaran bayangan yang diinginkan dalam keadaan mata tidak berakomodasi, bayangan yang terbentuk harus berada sangat jauh di depan lensa (jarak tak hingga). dalam hal ini objek harus berada di titik fokus lensa (s = f).
Perbesaran bayangan yang dihasilkan oleh lup dengan mata tidak berakomodasi adalah
Dimana P adalah perbesaran lup, sn adalah jarak titik dekat mata (sn = 25 cm untuk mata normal), dan f adalah jarak fokus lup.
3. Mikroskop
Perbesaran bayangan yang dihasilkan dengan menggunakan lup yang hanya menggunakan sebuah lensa cembung kurang maksimal dan terbatas. Untuk mendapatkan perbesaran yang lebih besar diperlukan susunan alat optik yang lebih baik. Perbesaran yang lebih besar dapat diperoleh dengan membuat susunan dua buah lensa cembung. Susunan alat optik ini dinamakan mikroskop yang dapat menghasilkan perbesaran sampai lebih dari 20 kali.
Sebuah mikroskop terdiri atas dua buah lensa cembung (lensa positif). lensa yang dekat dengan objek (benda) dinamakan lensa objektif, sedangkan lensa yang dekat mata dinamakan lensa okuler. Jarak fokus lensa okuler lebih besar daripada jarak fokus lensa objektif.
· mikroskop dan bagian-bagiannya
· pembentukan bayangan pada mikroskop
Objek yang ingin diamati diletakkan di depan lensa objektif di antara titik Fobdan 2Fob. Bayangan yang terbentuk oleh lensa objektif adalah I1 yang berada di belakang lensa objektif dan di depan lensa okuler. Bayangan ini bersifat nyata, terbalik, dan diperbesar. Bayangan I1 akan menjadi benda bagi lensa okuler dan terletak di depan lensa okuler antara pusat optik O dan titik fokus okuler Fok. Di sini lensa okuler akan berfungsi sebagai lup dan akan terbentuk bayangan akhir I2 di depan lensa okuler. Bayangan akhir I2 yang terbentuk bersifat maya, diperbesar, dan terbalik terhadap objek semula.
Perbesaran yang dihasilkan mikroskop adalah gabungan dari perbesaran lensa objektif dan perbesaran lensa okuler. Perbesaran lensa objektif mikroskop adalah
Dimana Pob adalah perbesaran lensa objektif, s’ob adalah jarak bayangan lensa objektif dan sob adalah jarak objek di depan lensa objektif.
Adapun perbesaran lensa okuler mikroskop sama dengan perbesaran lup, yaitu sebagai berikut.
· untuk mata berakomodasi maksimum
· untuk mata tidak berakomodasi
Dimana Pok adalah perbesaran lensa okuler, sn adalah jarak titik dekat mata (untuk mata normal sn = 25 cm), dan fok adalah jarak fokus lensa okuler.
Perbesaran total mikroskop adalah hasil kali perbesaran lensa objektif dan perbesaran lensa okuler. Jadi,
P = Pob × Pok
· Hal-hal penting yang perlu diketahui berkaitan dengan mikroskop:
(1) jarak antara lensa objektif dan lensa okuler disebut juga panjang tabung (d). panjang tabung sama dengan penjumlahan jarak bayangan yang dibentuk lensa objektif (s’ob) dengan jarak benda (bayangan pertama) ke lensa okuler (sok).
d = s’ob + sok
(2) menggunakan mikroskop dengan mata berakomodasi maksimum berarti letak bayangan akhir berada di titik dekat mata di depan lensa okuler. Jadi, dapat dituliskan
s’ok = −sn
(3) menggunakan mikroskop dengan mata tidak berakomodasi berarti jarak benda di depan lensa okuler (sok ) berada tepat di titik fokus lensa okuler (fok). Jadi, dapat dituliskan
sok = fok
4. Teropong Bintang
Bintang-bintang di langit yang letaknya sangat jauh tidak dapat dilihat secara langsung oleh mata. Teropong atau teleskop dapat digunakan untuk melihat bintang atau objek yang letaknya sangat jauh.
Teropong terdiri atas dua lensa cembung, sebagaimana mikroskop. Pada teropong jarak fokus lensa objektif lebih besar daripada jarak fokus lensa okuler (fob >fok). Teropong digunakan dengan mata tidak berakomodasi agar tidak cepat lelah karena teropong digunakan untuk mengamati bintang selama berjam-jam. Dengan mata tidak berakomodasi, bayangan lensa objektif harus terletak di titik fokus lensa okuler. Dengan demikian, panjang teropong (atau jarak antara kedua lensa) adalah
d = fob + fok
dimana fob adalah jarak fokus lensa objektif dan fok adalah jarak fokus lensa okuler.
Adapun perbesaran P yang dihasilkan oleh teropong adalah
Tidak ada komentar:
Posting Komentar